An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants.

نویسندگان

  • Anja Possart
  • Andreas Hiltbrunner
چکیده

Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evolutionarily Conserved Signaling Mechanism Mediates Far-Red Light Responses in Land PlantsC

Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and crypto...

متن کامل

FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL...

متن کامل

RED AND FAR-RED INSENSITIVE 2, a RING-domain zinc finger protein, mediates phytochrome-controlled seedling deetiolation responses.

Light is arguably the most important resource for plants, and an array of photosensory pigments enables plants to develop optimally in a broad range of ambient-light conditions. The red- and far-red-light-absorbing photosensory pigments or phytochromes (phy) regulate seedling deetiolation responses, photoperiodic flowering, and circadian rhythm. We have identified a long hypocotyl mutant under ...

متن کامل

Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways.

Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved R...

متن کامل

The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2013